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Abstract 
 
 The Box-Jenkins “airline” model is the most widely used 
ARIMA model for seasonal time series.  Findley, Martin and 
Wills (2002) previously examined a generalization of the airline 
model with a more restricted seasonal moving average factor 
modeling only seasonal effects and with a second-order 
nonseasonal moving average factor.  In this paper, we generalize 
the seasonal part of the model by associating combinations of 
the frequencies 1, 2, 3, 4, 5 or 6 cycles per year with individual 
coefficients.  We also consider properties of model-based 
seasonal adjustment filters obtained from the new models. 
 
 
1. Introduction  
 

Box and Jenkins (1976) developed a two-coefficient time 
series model, now known as the airline model, which is by far 
the most widely used ARIMA model for monthly and quarterly 
macroeconomic time series.  The Box-Jenkins airline model for 
a seasonal time series Zt with  observations per year has 
the form 
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Findley, Martin and Wills (2002) substituted a general 

MA(2) polynomial for  in (2), yielding their 
generalized airline model, 
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This paper reports the results of research and analysis 
undertaken by Census Bureau staff.  It has undergone a Census 
Bureau review more limited in scope than that given to official 
Census Bureau publications. This report is released to inform 
interested parties of ongoing research and to encourage 
discussion of work in progress. 

In this model the seasonal sum polynomial has a third coefficient 
c distinct from the coefficients associated with the other factors 
in the model.   

In the present paper, we investigate airline model 
generalizations (frequency-specific models) that assign separate 
seasonal coefficients to different seasonal frequencies. 

For monthly data, i.e. , the model (3) can be 

generalized by factoring 
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3, 4, 5 and 6 cycles per year to obtain a general frequency-
specific model, 
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If the six ci’s are distinct, the model has a different seasonal 
coefficient for each frequency, for a total of eight coefficients.  
Eight coefficients cannot be estimated reliably from 
macroeconomic time series of typical lengths. Therefore we 
combine the frequencies into two groups, with all frequencies in 
each group having the same coefficient, to reduce the total 
number of coefficients in the model to four. 
 These new models cannot be estimated with standard 
ARIMA modeling software.  We performed the estimation in the 
object-oriented matrix programming environment Ox (Doornik 
2001), using the state space functions in the SSFPack library 
(Koopman, Shephard and Doornik 1999). 
 We used Akaike’s AIC to compare the fit of competing 
models.  The airline model is a special case of each frequency-
specific model; thus each comparison to an airline model has a 
p-value that is approximated by a χ2 distribution.  With Aθ and 

Fθ denoting the parameter vectors of the airline and frequency-
specific models, respectively, ˆ( )AL θ  and ˆ( )FL θ the respective 
maximum likelihoods, and dim Aθ and dim Fθ the 
respective number of parameters in the models, 
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Table 1.  Modeling and spectrum results:  eight series having minimum AIC 5-1 models without a unit root. 
 

Series Θ 12 Θ  c1 c2 c2 
frequency 

peak χ2 p-value 
from eq. (7) 

U37AVS 0.6667 0.9668 0.9718 0.8086 4 largest 0.005 
U36CVS 0.3135 0.9079 0.9093 0.9591 6 largest 0.007 
U34KTI 0.6681 0.9669 0.9735 0.9371 4  largest 0.019 
X41020 0.6351 0.9629 0.9756 0.9036 1 smallest 0.039 
U39BVS 0.2718 0.8971 0.8951 0.8335 4 largest 0.065 
U33CVS 0.4832 0.9412 0.9479 0.7370 1 relatively large 0.093 
U33LVS 0.6786 0.9682 0.9893 0.9589 4 largest 0.130 
M00190 0.5358 0.9493 0.9390 0.9752 4 smallest 0.133 

 
 

Table 2.  Series descriptions. 
 

Series Descriptions 
M00190 Imports of wine and related products 
X41020 Exports of cookware, cutlery, house and garden ware 
U33CVS Construction machinery manufacturing 
U33LVS Pump and compressor manufacturing 
U34KTI Electromedical, measuring, and control instrument manufacturing 
U34EVS Communications equipment manufacturing, defense 
U36CVS Heavy duty truck manufacturing 
U36HVS Aircraft engine and parts manufacturing, nondefense 
U37AVS Household furniture and kitchen cabinet manufacturing 
U39BVS Sporting goods, doll, toy and game manufacturing 

 
 
When the airline model is correct, 
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asymptotically; see Taniguchi and Kakigawa (2000, p. 61.)  
Thus a given value of ∆AIC has an approximate p-value 
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By contrast, AIC differences between correct and incorrect 
frequency-specific models do not have a simple asymptotic 
distribution, because no model is a special case of another. 
 We will be simultaneously comparing the airline model to 
multiple frequency-specific models; section 5 discusses how we 
used the asymptotic distribution above to set empirical critical 
values for AIC differences in this situation. 
 
 
 
 
 
 
 

2.  5-1 Models 
 

As mentioned above, typical macroeconomic time series are 
not long enough to reliably estimate a different seasonal 
coefficient for each frequency.  Therefore we combine the 
frequencies into two groups, with all frequencies in each group 
having the same coefficient.  One way of doing this is to assign 
the same seasonal coefficient c1 to all frequencies except one, 
which receives coefficient c2. This yields six possible frequency-
specific models, which we call 5-1 models.  We fit each of the 
six 5-1 models to 75 Census Bureau series, consisting of the 
Foreign Trade series and series from the M3 Survey of 
Manufacturers’ Shipments, Inventories and Orders, for which an 
airline model had originally been chosen over other standard 
ARIMA models.1  From the seven models for each series 
(including the airline model), the minimum AIC model was 
determined.  AIC preferred a 5-1 model over the airline model 
for 21 series.  The largest difference from the airline model’s 

 
1 These are the two major categories of Census Bureau series for 
which an interesting number of series had a lower AIC for model 
(3) than for model (1); see Findley, Martin and Wills (2002).  
For other major categories (Retail Trade, Construction), airline 
models usually had Θ1/12 very close to 1. 



AIC was –6.81, associated with a p-value of 0.0045 from 
Equation 7. This occurred for the M3 series U37AVS for the 
model with frequency 4 cycles/year associated with coefficient 
c2.  (See Table 2 for series descriptions.)  

The seasonal adjustments of series U37AVS from the 
ARIMA model-based (AMB) decompositions (Hillmer and 
Tiao, 1982) of the preferred 5-1 model and the airline model are 
shown in Figure 1.  The squared gains of the end-point 
(concurrent) and mid-point (symmetric) seasonal adjustment 
filters are shown in Figures 2 and 3 respectively.  The squared 
gains of the airline and 5-1 models are similar except in a broad 
interval around the frequency 4 cycles/year, where the smaller 
squared gains of the 5-1 model indicate that its filters are 
suppressing more frequency components, which results in the 
smoother seasonal adjustment. For more information about the 
squared gains, see Findley and Martin (2003). 
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Figure 1.  Seasonal adjustments for series U37AVS.  The 4-

coefficient frequency-specific model has frequency  
4 cycles/year associated with the c2 coefficient. 
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Figure 2.  Squared gain of the finite concurrent model-based 

filter for series U37AVS. 
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Figure 3.  Squared gain of the finite symmetric model-

based filter for series U37AVS. 
 

For 13 of the 21 series for which AIC preferred a 5-1 model 
over the airline model, the preferred 5-1 model had one or more 
unit roots in the seasonal MA polynomial, i.e. either 1 1c = or 

2 1c = .  Such unit roots cancel with unit roots in the differencing 
polynomial, introducing fixed seasonal means and changing the 
structure of the underlying model so that it is no longer a 
generalization of the airline model -- its differencing is no longer 
the same. This changes the structure of the components of the 
AMB decomposition.  We shall defer consideration of models 
with a unit root for future study, noting for now that the unit 
roots are often spurious, as we discuss below.  Coefficients and 
other information for the remaining eight minimum AIC 5-1 
models without a unit root appear in Table 1.   

Seasonal spectral peaks of the (log-transformed and 
differenced) original series were compared with the frequency 
associated with the c2 coefficient in the minimum AIC model.  In 
all but a few cases, the frequency associated with c2 in the 
minimum AIC model corresponds to either the largest or 
smallest spectral peak.  This is graphical confirmation that the c2 
frequency in a minimum AIC 5-1 model differs in a consistent 
way from the other five frequencies.  For series U37AVS shown 
in Figure 1, frequency 4 cycles/year, associated with the c2 
coefficient in the minimum AIC model, has the largest peak in 
the spectrum of the original series.  The c1 coefficient estimate is 
0.9718, close to the twelfth root of the airline model seasonal 
coefficient Θ ( 12 0.6667 0.9668= ).  However, the c2 coefficient 
estimate is 0.8086.  This smaller value results in the squared 
gains having wider “troughs” at the 4 cycles/year frequency and 
indicates more variability in the seasonal component around this 
frequency.    
 
 
3.  4-2 Models 
 

Another four-coefficient version of the frequency-specific 
model (5) associates four frequencies with c1 and two with c2.  
There are 15 such 4-2 models.  For 37 of the 75 Census Bureau 
series, AIC preferred at least one of the 4-2 models over the 



airline model.  For 22 of these 37 series, all preferred 4-2 models 
had unit roots.  Among all the preferred 4-2 models that did not 
have unit roots, AIC differences ranged from –6.77 to –0.49, 
associated with p-values from 0.005 to 0.106 from Equation 7.  
Figure 4 shows the seasonal adjustments and Figures 5 and 6 the 
squared gains of the filters for series U36HVS, with frequencies 
1 cycle/year and 3 cycles/year associated with the c2 coefficient.  
The squared gains of the airline and 5-1 models are similar 
except in intervals around the frequencies 1 cycle/year and 3 
cycles/year, where the larger squared gains of the 4-2 model 
indicate that its filters are suppressing fewer frequency 
components.  This results in the less smooth seasonal adjustment 
(particularly visible in the last two years of the series).   

Among the preferred 4-2 models, there was rarely an obvious 
relationship between the size of the peaks in the spectrum of the 
original series and the pair of frequencies associated with the c2 
coefficient.  Thus the spectrum does not confirm that the c2 
frequencies in the preferred 4-2 models differ from the other 
four frequencies in a consistent way.    
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Figure 4.  Seasonal adjustments for series U36HVS.  The 
4-coefficient frequency-specific model has frequencies           

1 cycle/year and 3 cycles/year associated with the c2 
coefficient. 
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Figure 5.  Squared gain of the finite concurrent model-

based filter for series U36HVS. 
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Figure 6.  Squared gain of the finite concurrent model-based 

filter for series U36HVS. 
 
 

4.  Coefficient Estimation Uncertainties and a Three-
Coefficient 5-1 Model 
 

Cryer and Ledolter (1981) first showed that maximum 
likelihood coefficient estimates of an invertible MA(1) model 
take on a unit magnitude value with a positive probability, i.e. 
the estimated model is noninvertible.  Tanaka (1996) provides a 
detailed theory for this phenomenon. His Table 8.2 (p. 313) 
presents these probabilities for several sample sizes, as well as 
for seasonal MA(1) models with .  Many unit root 
estimates might be instances of this phenomenon.  We 
performed simulation experiments to determine how accurately 
the c2 coefficient can be estimated, with particular attention to 
how often it is estimated as unity, since unit roots change the 
underlying model, as discussed above.   

4,12s =

We generated 1000 simulations of the 5-1 model with series 
length 150 observations and true coefficients a = 0.5, b = 0.5,    
c1 = 0.96 and c2 = 0.93.  (These are the means of the coefficient 
estimates for c1 and c2 for the 21 Census Bureau series for which 
AIC preferred a 5-1 model to the airline model.)  Figures 7 and 8 
are histograms of the c1 and c2 estimates for the 5-1 model.  
While the c1 estimates have a fairly narrow distribution around 
the true value of 0.96 (Figure 7), the c2 estimates are much more 
widely spread around the true value of 0.93 (Figure 8).  In 
particular, c2 was estimated as unity for 4.7% of the series.   

We performed another simulation to investigate whether 
associating two frequencies with the c2 coefficient (the 4-2 
model) resulted in more accurate estimation of c2 (Figure 9).  
The true coefficients were a = 0.5, b = 0.5, c1 = 0.96 and            
c2 = 0.93.  The 4-2 model reduced the number of estimates in the 
tails of the distribution, including the number of estimates at 
unity.   
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Figure 7.  Distribution of estimates of c1 for 1000 

realizations of the 5-1 model with coefficients a = 0.5, b = 0.5, 
c1 = 0.96, c2 = 0.93.  Seven coefficient estimates were unity.  

Two coefficient estimates were less than 0.9. 
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Figure 8.  Distribution of estimates of c2 for 1000 realizations 

of the 5-1 model with coefficients a = 0.5, b = 0.5, c1 = 0.96,   
c2 = 0.93.  Forty-seven coefficient estimates were unity.  

Fifty-four coefficient estimates were less than 0.85. 
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Figure 9.  Distribution of estimates of c2 for 1000 

realizations of the 4-2 model with coefficients a = 0.5, b = 0.5, 
c1 = 0.96, c2 = 0.93.  Eleven coefficient estimates were unity.  

Twenty-four coefficient estimates were less than 0.85. 
 

Many Census Bureau time series might not be long enough 
to allow accurate estimation of the four coefficients of the 5-1 
model (the Foreign Trade series are 155 observations long, and 
the M3 series are 117 observations).  Thus we developed a three-
coefficient version of the 5-1 model in which a root reciprocal of 
the nonseasonal MA(2) polynomial is forced to have the 
coefficient  associated with five of the seasonal frequencies.  
(In this version, the MA(2) is restricted to have real roots.)  For 
example, when  is assigned to the seasonal frequency 6 
cycles/year, the model is 

1c
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We performed a simulation experiment to investigate the 

probability of estimating a unit root with the new 
parameterization.  We generated 1000 realizations with true 
coefficient values a = 0.5, c1 = 0.96 and c2 = 0.93 (for 
comparison to the earlier simulations).  A histogram of the 
coefficient estimates appears as Figure 11.  For 4% of the 
realizations, the c2 coefficient was estimated as unity, not a great 
improvement over the 4.7% estimated as unity for the four-
coefficient 5-1 model. 
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Figure 11.  Distribution of estimates of c2 for 1000 

realizations of the 3-coefficient 5-1 model with coefficients    
a = 0.5, c1 = 0.96, c2 = 0.93.  40 coefficient estimates were 

unity.  16 coefficient estimates were less than 0.85. 
 
 
There are six possible three-coefficient models assigning 

coefficient c2 to a single frequency.  We fit each of these models 
to the 75 Census Bureau series previously mentioned.  For 33 
series, AIC preferred at least one of the three-coefficient 
frequency-specific models to the airline model.  AIC differences 
ranged from –8.68 to –0.52, associated with p-values from 0.001 
to 0.113 from Equation 7.  Nine of these models had unit roots.  
Seasonal adjustments and squared gains for series U34EVS, with 
frequency 4 cycles/year associated with parameter c2, are shown 
in Figures 12, 13 and 14.  The squared gains of the airline and 



three-coefficient 5-1 models are similar except in a broad 
interval around the frequency 4 cycles/year, where the smaller 
squared gains of the three-coefficient 5-1 model indicate that its 
filters are suppressing more frequency components.     
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Figure 12.  Seasonal adjustments for series U34EVS.  The   

3-coefficient frequency-specific model has frequency              
4 cycles/year associated with the c2 coefficient. 
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Figure 13.  Squared gain of the finite concurrent 
model-based filter for series U34EVS. 
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Figure 14.  Squared gain of the finite symmetric model-based 

filter for series U34EVS.  
 

5.  AIC Differences and Multiple Models 
 
 We have discussed three frequency-specific generalizations 
of the airline model:  a four-coefficient 5-1 model, a four-
coefficient 4-2 model and a three-coefficient 5-1 model.  For 33 
of the 75 Census series, AIC prefers at least one of these three 
models (without a unit root) over the airline model.  We 
determined the overall minimum AIC model for each of these 
series.  A three-coefficient 5-1 model has the minimum AIC for 
19 series.  A four-coefficient 4-2 model has the minimum AIC 
for 11 series, and a four-coefficient 5-1 model has the minimum 
AIC for the other three series.   
 The question arises of appropriate critical values for the AIC 
differences, taking into account the fact that multiple models are 
being considered.  In the case of the 5-1 models, we are 
comparing 6 different models to the airline model, and in the 
case of the 4-2 models there are 15 comparisons.  From the 
results in Section 1, if the airline model is the correct model, the 
probability that the frequency-specific model will have a smaller 
AIC (and thus be incorrectly preferred) is 
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We can use this probability to empirically set critical values for 
AIC differences for the multiple comparisons.  Here the critical 
values are chosen to provide comparisons of the models in a way 
as close as possible to AIC for a single model situation.  We 
simulated 500 series of length 150 observations and 500 series 
of length 120 observations from the airline model.  The series 
lengths were chosen to correspond to the lengths of the Foreign 
Trade series (144 observations) and M3 series (117 
observations).  We fit both an airline model and one of the new 
models to each of the simulated series and observed the 
distribution of AIC differences.  We used θ = 0.5, Θ = 0.5. 
 In the case of the 4-coefficient models, dimΘF - dimΘA = 2, 
so the probability in Equation (9) is P(χ2

2 > 4) = 0.135.  We 
determined a threshold AIC difference (airline model AIC – new 
model AIC) which was exceeded by approximately 13.5% of 
simulated series.  In the case of the 3-coefficient models,  
dimΘF - dimΘA = 1.  P(χ2

2 > 2) = 0.157, so we determined an 
AIC difference which was exceeded by approximately 15.7% of 
simulated series.  The threshold AIC differences appear in Table 
3, along with the total number of preferred models and the 
number for which the AIC difference exceeds the appropriate 
threshold. 
 Overall, of the 75 Census series, we will treat 14 as being 
better fit by one or more frequency-specific models than by the 
airline model, by the criteria of this section.  (The last row of 
Table 3 sums to more than 14 because several series are better fit 
by more than one frequency-specific model than by the airline 
model.)  It should be noted that while this number takes into 
account the multiple models that comprise one frequency- 
specific generalization, it does not account for the multiple 



comparisons across either the frequency-specific types or the 75 
data sets. 
 
 
Table 3.  Threshold AIC values from Equation (9).  “Total 
preferred” is the number of  series for which the model had 
a lower AIC than the airline model (no unit roots). 
   

4-coefficient 3-coefficient Model 5-1 4-2 5-1 
Threshold AIC difference 

(120 obs) 1.9 2.0 1.8 

Threshold AIC difference 
(150 obs) 1.6 2.1 2.3 

Total preferred 8 15 24 
Number with AIC 

differences exceeding 
threshold 

4 7 9 

 
 
6.  Forecasting Performance 
 

To obtain information about a model’s forecasting 
performance, some number of observations at the end of the 
series may be regarded as future data to be forecast from a model 
fit to the earlier data.  These forecasts can be compared to the 
actual series values, or, for series values identified as outliers, to 
the outlier-adjusted values.  The span of modeled data may be 
increased one observation at a time, to produce a sequence of h-
step-ahead forecast errors.  When forecast errors are available 
from two competing models, the sequence of differences 
between the accumulating sums of squared errors can be an 
effective model-selection diagnostic.  An example of the 
diagnostic is Figure 15, showing the sequence of differences 
between the accumulating sums of h-step-ahead squared errors 
(h = 1, 12) for series U34EVS.  The sums for the airline model 
are subtracted from those for the three-parameter 5-1 model.  
The descending dotted line indicates that the one-step-ahead 
forecast performance of the 3-coefficient 5-1 model is generally 
better than that of the airline model.  The results for 12-step-
ahead forecast performance are inconclusive.  For more 
information about the out-of-sample forecast error diagnostic, 
see Findley, Monsell, Bell, Otto and Chen (1998). 

We examined this diagnostic for the models whose AIC 
difference from the airline model exceeds the appropriate 
empirically determined threshold discussed in section 5.  In 
many cases, the diagnostic was indeterminate, preferring neither 
model’s forecasting performance over the other.  The cases for 
which the diagnostic preferred one model over the other tended 
to be rather evenly split between the airline model and the 
frequency-specific model.  However, more 3-coefficient 5-1 
models were preferred for lag 1 performance (5 to 1) and more 
4-coefficient 4-2 models were preferred for lag 12 performance 
(3 to 0). 
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Figure 15.  Out-of-sample forecast error diagnostic for series 
U34EVS (accumulating sums of squared errors of the airline 

model subtracted from those of the three-parameter 5-1 
model). 

  
 
7.  Conclusions 
 

We have examined frequency-specific airline model 
generalizations in order to determine what gains may be 
achieved by modeling one or more seasonal frequencies 
separately from the others.  In order to compare the new models 
to the airline model, we have examined criteria such as model 
fit, seasonal adjustments, squared gains and estimation accuracy.  
By the criteria of Section 5, the new models result in a 
significant AIC difference for about 19% of the series examined.  
The one-step-ahead forecast error diagnostic does not suggest 
strong forecast performance gains for the new models.  The new 
models present certain estimation difficulties:  they can’t be 
estimated with standard ARIMA modeling software, and they 
are prone to problematic unit roots in the seasonal, as well as 
inaccurate estimation of the c2 parameter.  Our experience with 
these models strengthens our confidence in the robustness and 
flexibility of the airline model.  
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